3/MTH-201 Syllabus-2023

2024

(December)

FYUP: 3rd Semester Examination

MAJOR

MATHEMATICS

(Group Theory)

MTH-201

Marks: 75

Time: 3 hours

The figures in the margin indicate full marks for the questions

UNIT—1

- 1. (a) Let G be the set of all real 2×2 matrices $\begin{pmatrix} a & b \\ c & d \end{pmatrix}$, where $ad bc \neq 0$ is a rational number. Prove that G forms a group under matrix multiplication.
 - (b) Let G be a group. Show that for all $a, b \in G, (a^{-1})^{-1} = a$ and $(a \cdot b)^{-1} = b^{-1} \cdot a^{-1}$.

2+3=5

5

D25/981

(Turn Over)

(c)	Let G be a group, $a \in G$ and $b \in G$. Let n be a positive integer. Show that $(aba^{-1})^n = aba^{-1}$, if and only if, $b = b^n$.	4
(d)	If G is a finite group, then show that there exists a positive integer N such that $a^N = e$ for all $a \in G$.	4
(a)	If G is a group of even order, then prove that it has an element $a \neq e$ satisfying $a^2 = e$.	4
(b)	Show that the set $\{1, -1, i, -i\}$ forms a group with respect to multiplication. Is this group an abelian group? Justify.	5
(c)	Let G be a group and $a, b \in G$. Show that the equations $a \cdot x = b$ and $y \cdot a = b$ have unique solutions for x and y in G .	4
(d)	Let G be a group. Show that the identity element of G is unique. Also, show that every $a \in G$ has a unique inverse in G. 2+3	B=5
	Unit—2	
(a)	Show that every permutation can be expressed as a product of disjoint cycles.	6
(b)	Express (1, 2, 3) (4, 5) (1, 6, 7, 8, 9) (1, 5) as the product of disjoint 2 cycles	3

(c)	Let A_n be the set of even permutations in S_n . Show that A_n forms a group of order $\frac{n!}{2}$.	5
(d)	Let $G = \{e, a, a^2, a^3, b, ab, a^2b, a^3b\}$. Define a product in G by $a^4 = e, b^2 = a^2$, $ba = a^{-1}b$. Show that G forms a group (called the quaternion group).	5
4. (a)	Determine which of the following permutations are even: (i) (1 2 3 4 5) (1 2 3) (4 5) (ii) (1 2 3) (4 5) (1 6 7 8)	3
(b)	Compute $a^{-1}ba$, where $a = (1, 3, 5)(1, 2)$ and $b = (1, 5, 7, 9)$.	3
(c)	Let $D_{2n} = \{e, a, a^2,, a^{n-1}, b, ba,, ba^{n-1}\}$	
	be a set of $2n$ elements. Define the product in D_{2n} by the relations $a^n = e$, $b^2 = e$ and $ab = ba^{-1}$.	
	(i) Find the form of the product $(x^iy^j)(x^ky^l)$ as $x^{\alpha}y^{\beta}$.	3
	(ii) Using this, prove that G forms a group.	5
	(iii) If $n = 4$, then show that D_8 is the group of symmetries of the square.	5
D25/981	(Turn Ove	r)

3.

2.

		neiteinterrag 1997 Unit-3acit ad 6 1.1	
		quarg s march is red world to be	
d		s) State and prove Lagrange's theorem.	4
	(b	Let H be a subgroup of a group G $a \in G$ and $aHa^{-1} = \{aha^{-1} h \in H\}$. Show	; v
		that aHa^{-1} is a subgroup of G. Also show that if H is finite, then $o(H) = o(aHa^{-1})$.	, n s+3=6
	4071	o Companie which a Une following	2
		Prove that any subgroup of a cyclic	С
	, ,	group is itself a cyclic group.	4
		Let $G = \langle a \rangle$ be a cyclic group of order 8 and let $H = \langle a^4 \rangle$. Find all the	
		cosets of H in G .	3
	(e)	Define the centre Z of a group G and	i
		show that Z is a subgroup of G .	2
		maka jeran elika kuma ing	
	9 -		
6.	(a)	State and prove Euler's theorem.	4
	(b)	Show that every group of prime order is cyclic.	5
	(c)	Let G be a finite cyclic group of order n. Show that G has $\phi(n)$ generators.	5

If H is a subgroup of G, and $N(H) = \{ a \in G \mid aHa^{-1} = H \}$, then prove that N(H) is a subgroup of G and $H \subseteq N(H)$. 3+2=5

UNIT-4

- 7. (a) If N and M are normal subgroups of G. then prove that NM is also a normal subgroup of G.
 - (b) If H and K are normal subgroups of a group G such that $H \subseteq K$, then show that

$$\frac{G}{K} \cong \frac{(G/H)}{(K/H)}$$

- (c) Let G be a group and of an automorphism of G. If $a \in G$ is of order o(a) > 0, then show that $o(\phi(a)) = o(a)$.
- (d) Let G be a group, N a normal subgroup of G, T an automorphism of G. Prove that T(N) is a normal subgroup of G.
- Show that the group I(G) of inner automorphisms of G is isomorphic to G Z(G)

D25/981

(Continued)

(Continued)

5

4

4

5

Show Let H and K be normal subgroups of G such that $H \sim V = V$. that $H \cap K = \{e\}$. that hk = kh for all $h \in H$, $k \in K$. 3

4

- 1+4=5Let G be a group, H and K subgroups of G such that K is normal in G. Then show that $H \cap K$ is normal in H and the quotient group $\frac{n}{H \cap K}$ is isomorphic to HK K H the quotient group -
- let N be the set of complex numbers of absolute value 1. (That is $a+bi \in N$ if $a^2 + b^2 = 1$). Show that $\frac{G}{N}$ is isomorphic to the group of all positive real numbers Let G be the group of non-zero complex multiplication under multiplication. under numbers (g

* * 1

S

(b) Let H and K be normal subgroups of G such that $H \cap K = \{e\}$. Show that hk = kh for all $h \in H$, $k \in K$.

4

5

- (c) Let G be a group, H and K subgroups of G such that K is normal in G. Then show that $H \cap K$ is normal in H and the quotient group $\frac{H}{H \cap K}$ is isomorphic to the quotient group $\frac{HK}{K}$.
- (d) Let G be the group of non-zero complex numbers under multiplication and let N be the set of complex numbers of absolute value 1. (That is $a+bi \in N$ if $a^2+b^2=1$). Show that $\frac{G}{N}$ is isomorphic to the group of all positive real numbers under multiplication.

* * *